导航栏 ×
热门推荐
你的位置: 首页 > 教学资料 > 教案内容课件

初二数学知识点总结归纳(5篇)

发表时间:2024-12-05 18:09:29      周梦倩

初二数学知识点总结归纳(5篇)。

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,是时候写一份总结了。那么你真的懂得怎么写总结吗?下面是小编为大家收集的初二数学知识点总结,仅供参考,欢迎大家阅读。

初二数学知识点总结归纳 篇1

第十二章全等三角形

一、全等三角形

1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全

等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质

(1)全等三角形的对应边相等、对应角相等。

理解:

①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

②对应角的对边为对应边,对应边对

的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定

边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

1、性质:角的平分线上的点到角的两边的距离相等.

2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

注意:三角形的三条角平分线交于一点,这个点到三角形三边的距离相等。

三、学习全等三角形应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

(5)截长补短法证三角形全等。

初二数学知识点总结归纳 篇2

三角形知识点

1、全等三角形的对应边、对应角相等。

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

5、边边边公理(SSS)有三边对应相等的两个三角形全等。

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

7、定理1在角的平分线上的点到这个角的两边的距离相等。

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。

9、角的平分线是到角的两边距离相等的所有点的集合。

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

函数与方程知识点

1、一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

2、任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的`形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。

3、利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。

注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。

4、每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。

5、解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

初二数学知识点总结归纳 篇3

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x0

点P(x,y)在第二象限:x0

点P(x,y)在第三象限:x0

点P(x,y)在第四象限:x0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的'坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

点P与点p关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;

(3)点P(x,y)到原点的距离等于根号

三、坐标变化与图形变化的规律:

坐标(x,y)的变化

图形的变化

x a或y a

被横向或纵向拉长(压缩)为原来的a倍

x a,y a

放大(缩小)为原来的a倍

x (-1)或y (-1)

关于y轴或x轴对称

x (-1),y (-1)

关于原点成中心对称

x +a或y+ a

沿x轴或y轴平移a个单位

x +a,y+ a

沿x轴平移a个单位,再沿y轴平移a个单

初二数学知识点总结归纳 篇4

初二上册知识点

第一章 一次函数

1 函数的定义,函数的定义域、值域、表达式,函数的图像

2 一次函数和正比例函数,包括他们的表达式、增减性、图像

3 从函数的观点看方程、方程组和不等式

第二章 数据的描述

1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

条形图特点:

(1)能够显示出每组中的具体数据;

(2)易于比较数据间的差别

扇形图的特点:

(1)用扇形的面积来表示部分在总体中所占的百分比;

(2)易于显示每组数据相对与总数的大小

折线图的特点;

易于显示数据的变化趋势

直方图的特点:

(1)能够显示各组频数分布的情况;

(2)易于显示各组之间频数的差别

2 会用各种统计图表示出一些实际的问题

第三章 全等三角形

1 全等三角形的性质:

全等三角形的对应边、对应角相等

2 全等三角形的判定

边边边、边角边、角边角、角角边、直角三角形的HL定理

3 角平分线的性质

角平分线上的点到角的两边的距离相等;

到角的两边距离相等的点在角的平分线上.

第四章 轴对称

1 轴对称图形和关于直线对称的两个图形

2 轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上

3 用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

4 等腰三角形

等腰三角形的两个底角相等;(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

一个三角形的两个相等的角所对的边也相等.(等角对等边)

5 等边三角形的性质和判定

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

在三角形中,大角对大边,大边对大角.

第五章 整式

1 整式定义、同类项及其合并

2 整式的加减

3 整式的乘法

(1)同底数幂的乘法:

(2)幂的乘方

(3)积的乘方

(4)整式的乘法

4 乘法公式

(1)平方差公式

(2)完全平方公式

5 整式的除法

(1)同底数幂的除法

(2)整式的.除法

6 因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二下册知识点

第一章 分式

1 分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2 分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

(2) 分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减

3 整数指数幂的加减乘除法

4 分式方程及其解法

第二章 反比例函数

1 反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2 反比例函数在实际问题中的应用

第三章 勾股定理

1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.

第四章 四边形

1 平行四边形

性质:对边相等;对角相等;对角线互相平分.

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形.

推论:三角形的中位线平行第三边,并且等于第三边的一半.

2 特殊的平行四边形:矩形、菱形、正方形

(1) 矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定: 有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论: 直角三角形斜边的中线等于斜边的一半.

(2) 菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形.

(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形.

第五章 数据的分析

加权平均数、中位数、众数、极差、方差

初二数学知识点总结归纳 篇5

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的.函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

相关文章列表

返回顶部
返回底部