导航栏 ×
热门推荐
你的位置: 首页 > 教学资料 > 教案内容课件

一份完整的高中数学教案模板_精选9篇

发表时间:2024-11-10 16:07:22      吴倩怡

一份完整的高中数学教案模板(精选9篇)。

作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。

一份完整的高中数学教案模板 篇1

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1. 使学生熟练掌握函数的概念和映射的定义;

2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

(),yf_A

其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素 定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

4. 区间及写法:

设a、b是两个实数,且a

(1) 满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

(2) 满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

一份完整的高中数学教案模板 篇2

教学目标:

1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

教学重点:

复数的几何意义,复数加减法的几何意义.

教学难点:

复数加减法的几何意义.

教学过程:

一 、问题情境

我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

二、学生活动

问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

三、建构数学

1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的`模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

四、数学应用

例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

练习 课本P123练习第3,4题(口答).

思考

1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

思考 任意两个复数都可以比较大小吗?

例4 设z∈C,满足下列条件的点Z的集合是什么图形?

(1)│z│=2;(2)2<│z│<3.

变式:课本P124习题3.3第6题.

五、要点归纳与方法小结

本节课学习了以下内容:

1.复数的几何意义.

2.复数加减法的几何意义.

3.数形结合的思想方法.

一份完整的高中数学教案模板 篇3

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

(一)复习旧知,引出课题

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

一份完整的高中数学教案模板 篇4

一、向量的概念

1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

2、叫做单位向量

3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:

几何表示法、字母表示法、坐标表示法

三、向量的加减法及其坐标运算

四、实数与向量的乘积

定义:实数 λ 与向量 的积是一个向量,记作λ

五、平面向量基本定理

如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

六、向量共线/平行的充要条件

七、非零向量垂直的充要条件

八、线段的定比分点

设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

定比分点坐标公式及向量式

九、平面向量的数量积

(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

(3)平面向量的数量积的坐标表示

十、平移

典例解读

1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

其中,正确命题的序号是xx

2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx

3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx

4、下列算式中不正确的是( )

(a) ab+bc+ca=0 (b) ab-ac=bc

(c) 0·ab=0 (d)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

?函数y=x2的图象按向量a=(2,1)平移后得到的'图象的函数表达式为( )

(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

(c)2x-y=0 (d)x+2y-5=0

8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx

9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

(a)-5 (b)5 (c)7 (d)-1

11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

(a)2 (b)0 (c)1 (d)2

16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

一份完整的高中数学教案模板 篇5

教学目标:

(1) 了解集合、元素的概念,体会集合中元素的三个特征;

(2) 理解元素与集合的"属于"和"不属于"关系;

(3) 掌握常用数集及其记法;

教学重点:

掌握集合的基本概念;

教学难点:

元素与集合的关系;

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:

(1) 大于3小于11的偶数;

(2) 我国的小河流;

(3) 非负奇数;

(4) 方程的解;

(5) 某校20xx级新生;

(6) 血压很高的人;

(7) 著名的数学家;

(8) 平面直角坐标系内所有第三象限的点

(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5. 元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A[笔稿范文网 bIjiaOGAo.com]

(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA

例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A

4A,等等。

6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。

7.常用的数集及记法:

非负整数集(或自然数集),记作N;

正整数集,记作N或N+;

整数集,记作Z;

有理数集,记作Q;

实数集,记作R;

(二)例题讲解:

例1.用"∈"或""符号填空:

(1)8 N; (2)0 N;

(3)-3 Z; (4) Q;

(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。

例2.已知集合P的元素为, 若3∈P且-1P,求实数m的值。

(三)课堂练习:

课本P5练习1;

归纳小结:

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。

作业布置:

1.习题1.1,第1- 2题;

2.预习集合的表示方法。

一份完整的高中数学教案模板 篇6

教学目标:

1.理解流程图的选择结构这种基本逻辑结构.

2.能识别和理解简单的框图的功能.

3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.

教学方法:

1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

教学过程:

一、问题情境

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量.

试给出计算费用(单位:元)的一个算法,并画出流程图.

二、学生活动

学生讨论,教师引导学生进行表达.

解 算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.

在上述计费过程中,第二步进行了判断.

三、建构数学

1.选择结构的概念:

先根据条件作出判断,再决定执行哪一种

操作的结构称为选择结构.

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

断的不同情况进行不同的'操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

两个退出点.

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

一份完整的高中数学教案模板 篇7

一、教学目标

【知识与技能】

掌握三角函数的单调性以及三角函数值的取值范围。

【过程与方法】

经历三角函数的单调性的探索过程,提升逻辑推理能力。

【情感态度价值观】

在猜想计算的过程中,提高学习数学的兴趣。

二、教学重难点

【教学重点】

三角函数的单调性以及三角函数值的取值范围。

【教学难点】

探究三角函数的单调性以及三角函数值的取值范围过程。

三、教学过程

(一)引入新课

提出问题:如何研究三角函数的单调性

(二)小结作业

提问:今天学习了什么?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:

思考如何用三角函数单调性比较三角函数值的大小。

一份完整的高中数学教案模板 篇8

一.教材分析。

( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

想方法,都是学生今后学习和工作中必备的数学素养。

(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

二.学情分析。

( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

四.重点,难点分析。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法及公式应用中q与1的关系。

五.教法与学法分析.

培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

六.课堂设计

(一)创设情境,提出问题。(时间设定:3分钟)

[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

一份完整的高中数学教案模板 篇9

一、概述

教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

二、教学目标分析

1. 知识目标

1)

2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

2.能力目标

1)学会通过实例归纳概念

2)通过学习等比数列的.通项公式及其推导学会归纳假设

3)提高数学建模的能力

3、情感目标:

1)充分感受数列是反映现实生活的模型

2)体会数学是来源于现实生活并应用于现实生活

3)数学是丰富多彩的而不是枯燥无味的

三、教学对象及学习需要分析

1、 教学对象分析:

1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学

2、学习需要分析:

四. 教学策略选择与设计

1.课前复习

1)复习等差数列的概念及通向公式

2)复习指数函数及其图像和性质

2.情景导入

相关文章列表

返回顶部
返回底部