人教版七年级数学教案(合集8篇)。
作为一名无私奉献的老师,可能需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?下面是小编为大家整理的七年级数学上册人教版教案,仅供参考,希望能够帮助到大家。
人教版七年级数学教案 篇1
一、学情分析
本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
二、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十七章分式
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十八章函数及其图像
函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的.培养,以及提高数形结合的意识和能力。
第十九章全等三角形
本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。
第二十章平行四边形的判定
本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。
第二十一章数据的整理与初步处理
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
三、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、培养学生学习数学的良好习惯。这些习惯包括:
①认真做作业的习?包括作业前清理好桌面,作业后认真检查;
②预习的习惯;
③认真看批改后的作业并及时更正的习惯;
④认真做好课前准备的习惯;
⑤在书上作精要笔记的习惯;
⑥妥善保管书籍资料和学习用品的习惯;
⑦认真阅读数学教材的习惯。
人教版七年级数学教案 篇2
教学内容:
9加几,96-98页
教学目标:
1、通过对问题情境的探索,使学生在已有的经验的基础上自己得出计算9加几的各种方法;通过比较,使学生体验比较简便的计算方法;使学生初步理解凑十法,初步掌握9加几的进位加法的思维过程,并能正确计算9加几的口算。
2、培养学生初步观察、比较、抽象、概括能力和动手操作能力,初步的提出问题、解决问题的能力,发散学生的思维,培养创新意识。
3、培养学生合作学习和用数学的意识。
重点难点:
理解凑十法的思维过程。
教具准备:
实物投影、投影片、小棒18根。
学具准备:
每人准备小棒18根。
教学过程:
一、例1
1、教师用投影出示课本第9697页的全景图。
老师说明:这是学校运动会的场面,从图中你看到了什么?(让学生自己看图互相说一说)
2、运动会上,学校为了给运动员解渴,准备了一些饮料,已经喝了一些,比赛快要结束时小明问:还有多少盒?
师:你们知道还有多少盒吗?互相说一说。
(学生互相说时,教师巡视,注意发现不同的`方法。)
老师说明:你们说的几种方法都很好,这三种方法中你最喜欢哪一种?
3、学生回答后教师指出:刚才有的同学用数的方法知道了还有多少盒饮料,也有的同学是通过计算的方法得到的。下面我们一起看一看这些同学是怎样计算9加几的?
要算还有多少盒饮料怎样列式?板书9+4
9加4应该怎样计算呢?请同学们用小棒摆一摆。
老师指导学生进行操作:左边摆9根小棒代表盒子里的9盒饮料,右边摆4根小棒代表盒子外边的4盒饮料。
边提问边指导操作:盒子里的9盒再加上几盒就凑成了10盒?这个1盒是从哪来的?外边的4盒饮料拿走1盒后还剩多少盒?10盒与剩下的3盒合起来是多少盒?所以9+4等于多少?
4、利用课本右边的资源提出用加法计算的数学问题。
师:同学们接着看图,运动会上有9个踢踺子的,还有6个跳远的,要求踢踺子的和跳远的一共有多少人,应该怎样列式?
9+6等于多少呢?自己用小棒摆一摆。
学生汇报后,教师启发:你们还可以提出什么问题?
学生每提一个问题,教师就让学生们说一说一共有多少人。对于9加几的问题,还要让学生说一说自己是怎样想的。
二、练习反馈
1、圈一圈,算一算(做一做第1题)
学生独立看图说意,并动手圈一圈,直接看图写出得数。
2、看图列式。(做一做第2题)
学生独立看图填写,订正时可以让学生说一说是怎样想的。
3、教师提问:通过今天的学习,你都会计算9+几了?
学生每说一个算式,就让学生说出得数。
三、课堂小结
今天我们学习的题目有什么特点?
教师指出:今天我们学习的是9加几,计算9加几的题目,可以用数的方法,也可以用计算的方法。
四、课堂作业
学生在课本上独立完成,个别有困难的学生,教师给予个别指导和帮助,也可以让学生借助学具学习。
人教版七年级数学教案 篇3
教学目标
1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数。
2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系。
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数。
难点
识别单项式的系数和次数。
教学过程
一、创设情境,导入新课
师:出示图片。
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢?
二、推进新课
(一)用含字母的式子表示数量关系。
师:出示第54页例1。
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的'答案,但可能不会太规范,教师总结。
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)。
师生共同完成例2,进一步体会用字母表示数的意义。
巩固练习:第56页练习。
(二)单项式的概念。
师:出示问题。
引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?
生:通过观察、对比、讨论得出,各式都是数或字母的积。
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式。
巩固练习:下列各式是单项式的式子是___________。
人教版七年级数学教案 篇4
教学目标:
1.知识与技能:使学生掌握用竖式计算连加、连减的方法和简便写法,进一步巩固两位数加、减两位数。能灵活、正确的计算连加、连减的题目。
2.过程与方法:培养学生正确计算的能力和迁移的能力。培养学生合作学习和数学应用的意识。
3.情感态度和价值观:体验数学与日常生活的密切练习,在个性化及交流中获得成功的体验。体会数学与生活的联系,培养学生的创新意识。
教学重点:
掌握用竖式计算连加、连减的方法和简便写法。
教学难点:
能灵活、正确的计算连加、连减的题目,提高计算能力。
教学工具:
课件
教学过程:
一、导入新课
创设情境:
今年农场的南瓜丰收了,同学去帮助收南瓜,他们分小组进行比赛,下面是他们比赛的统计,你能获取哪些数学信息?
第一组 28人
第二组 34人
第三组 22人
二、新课学习
1.教师:三组一共摘了多少个?
学生:28+34+23
小组讨论:怎样计算?
汇报:先算什么,再算什么?如何计算?
教师:这个算式该怎么算呢?
同样是加法,它和我们前面学习的进位加法有什么相同和不同的地方呢?
引导学生说出:
前面我们学习进位加法只有两个数相加,这里有三个两位数相加,是一道连加算式。
教师:再比较一下28+34+22这个算式和我们黑板上的8+4+2这个算式,你又有什么发现?
引导学生观察比较后回答出:
两道都是连加,只是连加的范围不同而已。
教师:那它们的计算方法是否一样呢?
引导学生猜测它们的计算方法可能是一样的',都要数位对齐后,从个位加起,相加满10都要向前一位进1。
教师:同学们的猜测是否正确呢?
下面请小朋友们在小组内合作,比一比,看哪些小组想的办法更多、更好!
引导学生独立思考尝试计算后再在组内交流自己的想法,最后全班汇报。
主要引导学生从以下几种算法进行汇报:
整十加整十,个位数加个位数,然后再合起来:
先把前两个数相加,再把和与另一个数相加:
先把后两个数相加,再把和与第一个数相加:
学生汇报后教师整理在黑板上并追问:
除了这些算法,我们可不可以用我们前面学过的竖式来计算呢?
用竖式又该怎么算呢?
引导学生尝试列出竖式后并抽其中的两个同学投影展示。
主要引导学生列出右面的竖式:
2 8 6 2 2 8
+ 3 4 +2 2 +3 4
6 2 8 4 6 2
+2 2
8 4
如果有学生能列出竖式的第二种写法就请学生列出后说一说他是怎么想的,如果没有学生列出竖式的第二种写法教师则作如下的引导:
教师:其实这种竖式还有另外一种写法,大家想知道吗?
引导学生看书自学后再抽一学生投影展示。
教师:竖式的这两种写法是一样的吗?相比之下你更喜欢哪种?为什么?
学生说出自己喜欢的竖式,其实计算过程是一样的,但相比之下,第二种写法更简单一些。
教师:不管是用哪种方法计算,你觉得三个数连加与两个数相加相比,有哪些地方不一样呢?
要注意些什么问题呢?
引导学生说出三个数连加比两个数相加要复杂一些,特别是涉及进位的问题,因此要特别注意。
2.教学例2
多媒体课件出示例2情景图。
教师:同学们已经会算连加的算式了,根据这个情景图,你又能列出怎样的算式?
引导学生列出算式:
教师:这是一个什么算式?
学生:连减算式。
教师:这个连减算式和我们以前学的连减算式比有什么不同?
引导学生说出:以前学的连减算式是20以内的,85-40-26是100以内的连减,并且需要退位。
教师:根据我们前面的学习经验,你能试着计算这道连减算式吗?
教师放手让学生试着计算,教师巡视观察,发现不同的算法,对有困难的学生尽量指导学生用竖式进行计算。
学生尝试计算后汇报:
教师根据学生的回答整理板书连减的算法,主要引导学生列出以下两种竖式计算:学生列出竖式后请学生分别说一说计算的过程。
教师:在做这道题时哪个地方最容易做错?能给其他的同学提个醒吗?
让学生发现最容易做错的地方就是两次相减时都要退位,因此要按退位减法的计算方法一步一步地思考每步的计算结果。
教师:在做连加连减的计算时要注意什么?
引导学生回答:在连加连减的计算过程中依然要注意进位和退位的问题。
三、结论总结
1.整十加整十,个位数加个位数,然后再合起来;
2.先把前两个数相加,再把和与另一个数相加;
3.先把后两个数相加,再把和与第一个数相加;
四、全课小结
教师:同学们,在今天这节课上,你都学会了些什么?有哪些收获?
人教版七年级数学教案 篇5
教学目的
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点
1、重点:解含有括号的一元一次方程的`解法。
2、难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=3283+x=(45+x)y—5=2y+1问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
例1、判断下列哪些是一元一次方程
x=3x—2x—=—1
5x2—3x+1=02x+y=1—3y=5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x—[3(x+1)—(1+4)]=1
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,1、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6。
2、第1题。
人教版七年级数学教案 篇6
一、内容和内容解析
1.内容
三角形中相关元素的概念、按边分类及三角形的三边关系。
2.内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解。
本节课的教学重点:三角形中的相关概念和三角形三边关系。
本节课的教学难点:三角形的三边关系。
二、目标和目标解析
1.教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。
(2)理解并且灵活应用三角形三边关系。
2.教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素。
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。
四、教学过程设计
1、创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。
2、抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。
补充说明:要求学生学会三角形、三角形的`顶点、边、角的概念以及几何表达方法。
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡。
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。
3、概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。
1.以AB为一边的三角形有哪些?
2.以∠D为一个内角的三角形有哪些?
3.以E为一个顶点的三角形有哪些?
4.说出ΔBCD的三个角。
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。
4、拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。
人教版七年级数学教案 篇7
【教学目标】
知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式。
过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。
情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。
【教学重难点】
重点:掌握用提公因式法把多项式分解因式。
难点:正确地确定多项式的最大公因式。
关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
【教学过程】
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2。
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由。
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的`方法叫做提公因式法。
二、小组合作,探究方法
教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
三、范例学习,应用所学
例1:把-4x2yz-12xy2z+4xyz分解因式。
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)【WWW.sXW9.COm 实习报告网】
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用简便的方法计算:
0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便。
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本115页练习第1、2、3题。
【探研时空】
利用提公因式法计算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止。
六、布置作业,专题突破
课本119页习题14.3第1、4(1)、6题。
人教版七年级数学教案 篇8
教学目标
【知识与能力目标】
1、巩固理解有理数的概念。
2、掌握数轴的意义及构成特点,明确其在实际中的应用。
3、会用数轴上的点表示有理数。
【过程与方法目标】
【情感态度价值观目标】
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例。
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的.过程及合理、简明的特点。
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形。
不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度。
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示。
5、归纳:
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1,先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,-10/3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是:
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位。
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点。
(4)如图,a、b为有理数,则a0,b0,ab。
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。