初一数学教案。
作为优秀的教学工作者,在教学时能够胸有成竹,教案是老师上课的主要依据。真正的教案是写给自己的、是自己做好教学工作的案头必备材料,我们要如何写好一份值得称赞的教案呢?为了让你在使用时更加简单方便,下面是的编辑整理的“初一数学教案”,欢迎分享给你的朋友!
初一数学教案【篇1】
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
初一数学教案【篇2】
教学目的
1、使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2、通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点
判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程
一、知识回顾
问题1:轴对称图形的定义是什么?
它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?
找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?
轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?
线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?
等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。
问题6:如何判断三角形是等腰三角形?等边三角形?
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。
二、例题
1、下列图案是轴对称图形的有()
A、1个D。2个C。3个D。4个
2、如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么
(1)∠DEF与∠DFE相等吗?为什么?
(2)OE与OF相等吗?为什么?
三、巩固练习
如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″。求△BCD的周长和∠DBC度数。
四、课堂小结
通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题。
初一数学教案【篇3】
教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:数轴的概念.
教学难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
(一)创设情境,导入新课
课件展示课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第一步:画直线,定原点.
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做学生自己练习画出数轴.
试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结整数在数轴上都能找到点表示吗?分数呢?
可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.
(三)应用迁移,巩固提高
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()
A.1个 B.2个C.3个D.4个
【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()
A.1998个或1999个 B.1999个或2000个
C.2000个或2001个 D.2001个或2002个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
(五)课堂跟踪反馈
夯实基础
1.规定了 、 、 的直线叫做数轴,所有的有理数都可从用 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()
A.7 B.-3
C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是()
A.正数 B.负数
C.不是负数 D.不是正数
5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是和.
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.
9.下列四个数中,在-2到0之间的数是()
A.-1 B.1 C.-3 D.3
初一数学教案【篇4】
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:powerpoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的.分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
初一数学教案【篇5】
课型:新授课 备课人:徐新齐 审核人:霍红超
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,
研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.
如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF
的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1) (2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
初中七年级下册数学教案:有序数对
有序数对
课型:新授 备课人:霍红超 审核人:霍红超
学习目标
1. 理解有序数对的应用意义,了解平面上确定点的常用方法
2. 培养用数学的意识,激发学习兴趣.
学习重点: 理解有序数对的意义和作用
学习难点: 用有序数对表示点的位置
学习过程
一.问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1. 如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1. 为什么要用有序数对表示点的位置,没有顺序可以吗?
2. 几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
初一数学教案【篇6】
七年级数学教案:初一数学下册第五章生活中的轴对称导学案
第三课时5.3.1简单的轴对称图形(一)
一、学习目标:1.等腰三角形的有关概念,探索并掌握等腰三角形的性质;
2.了解等边三角形的概念,并探索等边三角形的性质。
二、学习重点:等腰三角形的性质,等边三角形的性质。
三、学习难点:了解等腰三角形的性质、等边三角形的性质都是源于它们的轴对称
(一)预习准备
(1)预习书121~122页
思考:等腰三角形和等边三角形的性质?
(2)预习作业:
△ABC中,AB=AC。
(1)若∠A=50°,则∠B=______°,∠C=______°;
(2)若∠B=45°,则∠A=______°,∠C=______°;
(3)若∠C=60°,则∠A=______°,∠B=______°;
(4)若∠A=∠B,则∠A=______°,∠C=______°。
(二)学习过程:
1、有两边相等的三角形是等腰三角形,它是_______图形。
2、等腰三角形顶角的_______、底边上的_______、底边上的_______重合(也称“_______”),它们所在的直线都是等腰三角形的_______。
3、等腰三角形的两个底角_______。
4、三边都相等的三角形是_______三角形,也叫做_______三角形。
5、如果一个三角形有两个角相等,那么它们所对的边_______。
例1、①等腰三角形的一个角是30°,则它的底角是______°
②等腰三角形的周长是24cm,一边长是6cm,则其他两边的长分别是__________
变式练习.
(1)在△ABC中,若BC=AC,∠A=58°,则∠C=_____,∠B=________.
(2)等边三角形的两条中线相交所成的钝角度数是_______.
例2、如图,在△ABC中,已知AB=AC,D是BC边上的中点,∠B=30°,求∠BAC和∠ADC的度数。
变式练习.如图,p、Q是△ABC的边BC上的两点,且Bp=pQ=QC=Ap=AQ,则∠BAC=_______.
拓展:
12.如图,∠ABC与∠ACB的平分线相交于F,过F作DE∥BC交AB于D,交AC于E,
求证:BD+EC=DE.
13.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.
回顾小结:
(1)等腰三角形和等边三角形的轴对称性质
(2)三线合一
第四课时5.3.2简单的轴对称图形(二)
一、学习目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线、线段垂直平分线的有关性质。
二、学习重点:1、角、线段是轴对称图形
2、角的平分线、线段垂直平分线的有关性质
三、学习难点:角的平分线、线段垂直平分线的有关性质
(一)预习准备
(1)预习书123~126页
思考:角平分线有什么特征?线段垂直平分线有什么特征?
(2)预习作业:
1.下列图形中,不是轴对称图形的是().
A.角B.等边三角形C.线段D.平行四边形
2.下列图形中,是轴对称图形的有()个.
①直角三角形,②线段,③等边三角形,④正方形,⑤等腰三角形,⑥圆,⑦直角.
A.4个B.3个C.5个D.6个
3.下列说法正确的是().
A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴
C.两个全等的三角形组成一个轴对称图形;D.直角三角形一定是轴对称图形
初一数学教案【篇7】
10.3从数据谈节水---说课稿
一、教材分析
1、教材的地位和作用
课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。
2、教学目标
根据学生的学习内容、新课程理念和认知水平,特制定如下目标:
(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点
(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析
我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析
枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得最大的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。
四、教学形式和课前准备
本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。
五、教学过程分析
教学过程 设计意图说明
新课引入
资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?
(2)你了解世界及我国有关水资源的现状吗? 借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!
探究新知活动一:
阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1) 地球上的水资源和淡水资源分布情况怎么样?
(2) 我国农业和工业耗水量情况怎么样?
(3) 我国不同年份城市生活用水的变化趋势怎么样?
(4) 根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一。
活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1) 家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)
活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。
课堂小结:
1.当前水资源状况,
2.节约水资源带来的价值,
3.节约水资源的办法
布置作业
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。
通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!
初一数学教案【篇8】
一、教学目的
【知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
【教学重点】
数轴的三要素,用数轴上的点表示有理数。
【教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
初一数学教案【篇9】
一、教学目标
1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。
2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。
3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。
二、教学设想
本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。
三、教材分析
本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。
四、重点,难点
1、教学重点:单项式,单项式系数及单项式次数概念。
2、教学难点:区别单项式的系数和次数。
五、教学方法
通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。
六、教学过程
(一)创设情境,激趣导入。
问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?
根据速度,时间和路程的关系:路程=速度*时间则
它2小时行驶的路程:100*2=200(千米),
它3小时行驶的路程:100*3=300(千米),
它t小时行驶的路程:100*t=100t(千米),
字母t表示时间,用含有字母t的'式子100t表示路程。
问题2:用含有字母的式子填空。解答教科书第54面思考题。
(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。
(二)合作交流,探索新知。
1、单项式概念的探索。
(1)以上几个式子有什么共同特征:
6a2是6×a×a的乘积。
a3是a×a×a的乘积。
2.5x是2.5×x的乘积。
vt是v×t的乘积。
-n是-1×n的乘积。
归纳:都表示数与字母的积。
(2)引出单项式的概念:
①教学活动:
倾听、思考、分析、思考。
②师生互动:
列式解答、倾听、理解、思考、归纳。
倾听、理解概念、举例集体评议。
③学生活动:
从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。
培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。
培养学生的分析,思考及归纳能力,加深对概念的了解.
培养学生的评价能力,为概念的引出.
(3)让学生举出单项式的例子。
2、单项式系数和次数的探索。
问题1:以上单项式有什么结构特点。
由数字因数和字母因数两部分组成。
问题2:分别说出它们的数字因数和各字母的指数。
单项式中的数字因数,叫做单项式的系数。
一个单项式中,所有字母的指数的和,叫做这个单项式的次数。
交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。
教师巡视指导,请各别学生展示交流成果。
3,例题教学
教科书55页例1
学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。
(三)练习巩固,熟练技能。
1、教科书第56页练习第1,2题。
2、下列各式:-x+3,6x,其中是单项式的是。
(四)总结反思,拓展延伸。
1、让学生谈谈本节课的收获。
2、通过今天的学习,你想进一步探究的问题是什么
七、板书设计
2.1整式
一、青藏铁路问题(略)。
二、单项式的概念。
单项式系数及次数的概念。
三、例题讲解
八、点评
本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。
初一数学教案【篇10】
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
1.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
2.例:已知方程3X+2Y=10
⑴当X=2时,求所对应的Y的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的代数式表示Y;
⑷用含Y的代数式表示X;
⑸当X=-2,0时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?
2.你还有什么问题或想法需要和大家交流?
3.教材P82
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。